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The Onset of Natural Convection and Heat Transfer Correlation in
Horizontal Fluid Layer Heated Uniformly from Below
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The critical condition of the onset of buoyancy-driven convective motion of uniformly heated

horizontal fluid layer was analysed by the propagation theory which transforms the disturbance

quantities similarly. The dimensionless critical time, rc, is obtained as a function of the Rayleigh

number and the Prandtl number. Based on the stability criteria and the boundary-layer
instability model, a new heat transfer correlation which can cover whole range of Rayleigh

number was derived. Our theoretical results predict the experimental results quite reasonably.
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Nomenclature----------
a : Horizontal wave number [-]

d : Fluid depth [m]
g : Gravitational acceleration [m/s2

]

k : Thermal conductivity [J/mK]

Nu : Nusselt number (=qw/kLIT) [-]
P : Pressure CPa]
Pr : Prandtl number (= v/ a) [-]
Ra : Rayleigh number (=g{3LITd3

/ av) [-]
Ra, : Rayleigh number based on the heat flux

(=g{3qwd4/ kav) [-]
qw : Wall heat flux [J/m2

]

T : Temperature [K]

: Time lsl
U : Velocity vector [m/s]
w : Dimensionless vertical velocity [-]

X,Y,Z : Space in Cartesian coordinate em]

Greeks

a : Thermal diffusivity [m2/s]

{3 : Thermal expansion coefficient [l/K]

LIT : Temperature difference [K]
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~ : Similarity variable [-]

e : Dimensionless temperature [-]
!J. : Viscosity CPa s]

v : Kinematic viscosity [m2/s]

p : Density [kg/m"]
t: : Dimensionless time [-]

Subscripts
o : Basic quantity

1 : Disturbed quantity

1. Introduction

When an initially quiescent fluid layer is heated
from below with a certain Rayleigh number ex­

ceeding critical value, the buoyancy-driven

convective motion occurs. This convective motion

driven by buoyancy forces has attracted many

researcher's attention since Benard's (1901) sys­

tematic experiments. It is well known that buoy­

ancy-driven convection plays an important role

in many engineering problems, such as chemical
vapor deposition, solidification, electroplating

and also many other conventional processes

involving heat and mass transfer. Most· of these

processes involve non-linear, developing temper­

ature profiles and therefore it is one of the most
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important problems to predict when or from
where the buoyancy-driven motion sets in.

Morton (1957) is the first to attempt a theo­
retical analysis of the stability of initially quies­
cent fluid layer with time-dependent base tem­
perature profiles. Lick (1965) and Currie (1967)
also analysed the stability of fluid layers heated
from below with time-dependent manner. In their
analyses, they froze the base temperature profiles
and treated time as a parameter, therefore they
neglected the variation of disturbances with time.
From these, their analysis called frozen-time
model confirms experimental results when base
temperature profiles are nearly linear. Foster
(1965) set forward an amplification theory to
analyze the onset of buoyancy-driven convective
motion which is taken when the fastest growing
disturbances are amplified by a certain factor of
its initial white noise disturbances. However, this
method determined the initial disturbances and
growth factor arbitrarily to fit experimental data.
Wankat and Homsy (1977) introduced the energy
method to analyse the convective instability of
initially quiescent fluid layer under time
-dependent base temperature profiles. The energy
method determines a lower bound of onset con­
dition, therefore predicted onset times are lower
than experimental ones. Another weak point of
this method IS that it cant show the dependence of
critical conditions on the Prandtl number. Jhaveri
and Homsy (1982) analysed the onset time of
buoyancy-driven motion under the step and line­
ar change of surface temperature with time by
introducing a random forcing function. They
identified the onset condition by 1% increases in
Nusselt number compared to the conduction state.

Choi et al. (1986) proposed the propagation
theory to analyse the buoyancy-driven convection
phenomena. In their analysis, they introduce the
thermal-boundary layer thickness as a new length
scaling factor and transformed disturbance
equations similarly under the linear stability the­
ory and the principle of exchange of stabilities. In
the propagation theory, the onset conditions are
defined as the conditions that the fastest growing
disturbances start to grow rapidly. Their
-predicted results were compared with

experimental data of initially quiescent horizontal
fluid layers (Kim et al., 1999a), initially quiescent
fluid-saturated horizontal porous fluid layers
(Yoon and Choi, 1989), laminar forced
convection flow (Kim et al., 1999b), and laminar
natural convection flow (Chun and Choi, 1991),
reasonably well.

Another important problem in buoyancy-driv­
en convection will be the heat transfer
characteristics in the thermally fully-developed
state. For analysing this problem Howard (1964)
proposed the boundary layer instability model
that, for very high Rayleigh number case, the heat
transfer characteristics have close relationship
with stability criteria. Busse (1967) modified
Howard's concept by considering the heat transfer
resistance of upper boundary. Long (1976),
Cheung (1980) and Arpaci (1997) derived back­
bone equation to predict the heat transfer in
horizontal fluid layer. By incorporating their sta­
bility criteria into the boundary-layer instability
model, Choi and his coworkers have derived new
heat transfer correlations for horizontal fluid
layer (Lee et al., 1988), fluid saturated porous
layer (Yoon and Choi, 1989), plane Couette flow
(Choi and Kim, 1994), and plane Poiseuille flow
(Kim et al., 1999b). Their resulting heat transfer
correlations are in good agreement with a great
deal of available experimental data.

In this study we consider the buoyancy effects
in horizontal fluid layer heated from below. The
onset condition of buoyancy-driven convective
motion is analysed and the predicted values are
compared with available experimental data. Also,
a new heat transfer correlation is proposed and
compared with experimental data.

2. Stability Analysis

2.1 Governing equations
The system considered here IS a Newtonian.

fluid with an initial temperature T, confined by
two infinite parallel plates. The fluid layer of
depth "d" is heated from below with constant flux
qw. The upper boundary is kept at initial temper­
ature T1• The schematic diagram of the base
system is shown in Fig. 1. For this system the
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n=l J.ln

where s=z/Jr. The above equation is in good

agreement with the exact solution (8) in the

region of rS::0.05, as shown in Fig. 2.

Since we are primarily concerned with the deep

-pool case of large Ra, and small t; the above

Leveque-type solution of Eq. (9) represents the

basic temperature profile quite well. Although the

above Leveque-type solution represents the base

temperature profile, for the mathematical conve-

where f.L,,=(n-I/2)7l'. For deep-pool systems,

the Leveque-type solution can be obtained as

follows (Carslaw and Jaeger, 1959):

where r=d2
/ (at) ,z=Z/d and dJ=k(T-T1) /qwd.

The subscript "0" denotes the base state. The

Graetz-type solution of base temperature field

can be obtained by employing conventional sepa­

ration of variable technique as follows:

with the following initial and boundary

conditions.

(5)

(4)

(1)

(2)

(3)

R8.q,c= 1296

IIPr=- and Ra,
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{It + U .\7}T=ayt.!T

T;

d

Fig. 1 Schematic diagram of base system

For a rapid heating system with large Ra-,

however, the stability problem becomes transient

and complicated, and the critical time te to mark

the onset of buoyancy-driven motion remains

unsolved.

During the conduction state the base tempera­

ture field can be governed by the following

dimensionless forms:

...L----,l--r"'-r---,r---r--->..-- Rigid

governing equations of flow and temperature

fields are expressed by employing the Boussinesq

approximation:

where k and II denote thermal conductivity and

kinematic viscosity, respectively. Ra, is sometimes

called the dimensionless heat flux. In case of slow

heating the basic temperature profile is linear and

time-independent and its critical condition is

independent ofPr and represented by (Sparrow et

al., 1964)

where U, T, P, f.L, a, g, p and ,B represent velocity

vector, temperature, pressure, viscosity, thermal

diffusivity, gravitational acceleration, density, and

thermal expansion coefficient, respectively. The

subscript "r" represents the reference state.

The important parameters to describe the

present system are the Prandtl number, Pr, and

the Rayleigh number based on the bottom heat

flux, Ra.q, defined by
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Then the base temperature field within r~0.05

can be transformed to

nience we introduce the dimensionless variable
80·:

The solution of Eq. (11) satisfying Eq. (12) can
be obtained by conventional numerical scheme
and is the same as the base temperature profile of
Eq. (9).

(18)

(17)

From the above equations, the following relation
can be obtained:

where "i" is the imaginary number. The horizon­
tal wave number "a" has the relation of a= [ai+
a~] 1/2. The propagation theory employed to find
the onset time of convective motion (tc) is based
on the assumption that, at the onset of motion, the
disturbances are propagated mainly within the
thermal boundary layer thickness Lh and the
following scale analysis by using Lh(oql/2) as

proper length scale would be valid for perturbed
quantities of Eqs. (2) and (3), respectively:

aT aTo M2 T 1
--W1---av-T1-~at az ilf

f3T M2W W1 W gPTv~H
g 1-lIv 1-117' 1- II

( 12)

(II)

(10)

I 80.=0
2 .

o and 80· (00) =0d80· (0)
d~

with the boundary conditions

where Ra&. is the Rayleigh number based on the

length Lh and temperature difference across the
boundary layer thickness LIT. For the present
system, the relation between LIT and qw has the
following form:

where Or (ex.rrJ is the dimensionless thermal
boundary layer thickness.

With the above reasoning the dimensionless
amplitude functions of the most dangerous mode
are assumed to have the form of

Therefore, Ra (ex g{!qwL# R"- ) has the&. kall .....&.

meaning of the Rayleigh number based on the
boundary layer thickness Lh and the wall heat
flux qw. It is now assumed that for small t the
characteristic value ofRa&.( ex Raqr) will become

a constant since IaTo/az I-LlT/Lh in Eq. (19).
For the isothermal heating systems, this trend
predicted by Patick and Wragg (1975), Foster
(1965) , and Jhaveri and Homsy (1982)
experimentally and theoretically. Based on these
evidences, the following relation is obtained from
Eq. (18):

(21)

(20)

I~I-af

LIT- qwLh
k

Our goal is to find the critical time zc for a given
Pr and Ra, by using Eqs. (13) - (15).

Based on the normal mode analysis, the
convective motion is assumed to exhibit the hori­
zontal periodicity. Then the perturbed quantities
can be expressed as follows:

[w1(r, x, y, z), fA(r, x, y, z)]
=-[ W1 (r, z), fA (r, z) ]exp[i (axx+ayy)] (16)

2.2 Stability equations
Under the linear stability theory disturbances

caused by the onset of thermal convection can be
formulated, in dimensionless form, in terms of the
temperature" component fA and the vertical veloc­
ity component ~1 by transforming Eqs. (I) - (3):

{;r tr -"ij2}~W1=V1
2 fA (13)

afA a80 -2
ar +Rllqwr-az="i11 fA (14)

M2 az az az "2 az az
where v -= ax2 +W+azr and v 1 = ax2+w·
Here the velocity component has the scale of a/d
and the temperature component has the scale of
all/ (gf3d3

) . The proper boundary conditions are
given by

W1= aWl = aafA =0 at z=O (15.a)az z

W1= aa:1 =fA=O at z=l (15.b)
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Fig. 3 Neutral stability curve for Pr --7 00

2.4 Stability analysis results
In the limiting case of infinite or zero Prandtl

number, the governing equations are reduced to a
simpler form because the inertia or viscous terms
are negligible, respectively. For this limiting case,
Lee et al. (1988) analysed the stability conditions.
They approximated a base temperature profile
and distributions by using integral method and
WKB approximation. For infinite Prandtl num­
ber, the critical condition obtained from Fig. 3 is
Ra·=20.03, which is very close to the one
predicted by Lee et al. (Ra· =20.88) . It shows
good agreements between their critical condition

Ra", D3w· (0) and e· (0) are correct, w·, Dw"

and De· will vanish at the upper isothermal
boundary. To improve the initial guesses the
Newton-Raphson iteration is used. When con­
vergence is achieved, the upper boundary is
increased by predetermined value and the above
procedure is repeated. Since the disturbances de­
cay exponentially outside the thermal boundary
layer, the incremental change of Ra" also decays
fast with an increase in upper boundary depth.
This behavior enable us to extrapolate the
eigenvalue to the infinite depth. The results of the
above procedure for Pr ~ 00 is shown in Fig. 3.
The minimum value of Ra" on the curve of Ra"
vs. a" will represent the conditions of the onset of

thermal convection.

2.3 Solution procedure
In order to solve the stability Eqs. (23) - (25)

the base temperature profile must be obtained
from Eqs. (11) and (12). For this purpose the
fourth or fifth order Runge-Kutta-Fehlberg

method is employed and the stability equations
are solved by employing the outward shooting
scheme of Chen et al. (1983). In order to integrate
these stability equations the proper value of
D2w·, D3w· and e· at t=O are assumed for a
given Pr and a". Since the stability equations and
the boundary conditions are all homogeneous, the
value of D2w· (0) can be assigned arbitrarily and
the value of the parameter Ra· is assumed. This
procedure can be understood easily by taking into
account of the characteristics of eigenvalue
problems. After all the values at t=O are provid­
ed, this eigenvalue problem can be proceeded
numerically.

Integration is performed from t=O to a
fictitious upper boundary with the fourth order
Runge-Kutta-Gill method. If the guessed value of

where a·=a.;r, Ra·=Raqr and D=d/dt. For
the deep-pool case, the boundary conditions, Eq.
(15), are transformed as follows;

w·=Dw·=De·=O at t=O
w·=Dw·=e·=o as t ~ 00

{(D2-a")2+ 2~r (m3- a" S'D+ 2a" )}w'=-a"O' (23)

(D2++tD-a·') e·=Ra·w·D~t (24)

It is assumed that a" and Ra" are the eigenvalues,
and also the onset time of buoyancy-driven
convection for a given Ra, is unique under the
principle of exchange of stabilities. The above
procedure is the essence of our propagation theo­
ry. Our propagation theory relaxed frozen-time
model by considering the terms involving 0(') /

or in Eqs. (13) and (14).

where w· and e· are the amplitude functions of
disturbances. By using these relations the stability
equation is obtained from the Eqs. (13) and (14)
as
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and ours. This means that our numerical scheme
is quite favorable to analyse the stability
equations.

For finite Prandtl numbers, the critical values
of~ and R~ are summarized in Table 1. Based
on these results and Lee et al.' s result for Pr -+ 0,
the critical condition can be represented as:

R~=20.03[1+( 0p:3 rT/2 (26)

It seems evident that R~ increase with de­
creases in Pr, and the Pr effect on critical
conditions is negligible for Pr ~ 10. The Pr effect
becomes pronounced for Pr < I. This means that
the inertia terms make the system more stable.
This trend can be shown in Fig. 4 obviously. In
order to compare the presented stability criteria
with the experimental data, we introduce the
experiments of Nielsen and Sabersky (1973) and
Chu (1990), where very viscous liquids were
used. The Prandtl numbers in their experiments
were 45-4700 and 4X lOS, respectively. As
mentioned above, the critical conditions are
nearly independent of Pr for Pr ~ 10, so we adopt

Table 1 Numerical values of critical conditions for
the various Pr

Pr 0.01 0.1 0.7 1 7 10 100 00

Rat 1122.30 158.64 45.90 39.0423.36 22.41 20.29 20.03

at 0.73 0.73 0.67 0.66 0.57 0.56 0.52 0.52

the infinite Pr case as the basis of the comparison
between theoretical and experimental results. For
infinite Pr, the stability criteria can be expressed
as follows:

zc=4.48Raq -1/2 and ac=O.25Ra¥' (27)

The above results are compared with the
experimental data of Nielsen and Sabersky
(1973) and the theoretical results of Kim and
Kim (1986) in Fig. 5. As shown in Fig. 5, our rc
is lower than the experimental data. However,
Kim and Kim's results shows fairly good agree­
ment with experimental data. This discrepancy is
due to the difference in the definition of critical
condition of each study. We define rc as the time
that infinitesimal disturbances start to grow
exponentially, but Kim and Kim (1986) defined
as the time when the Nusselt number shows min­
imum value in the plot of Nu vs. t: It can be
assumed that a certain time is required after the
onset of disturbances to amplify the disturbances
to affect the Nusselt number. This may explain the
difference between our critical time and Kim and
Kim's.

Foster (1969) proposed that the onset time of
natural convection obtained by using the thermal
boundary layer thickness as a length scaling fac­
tor should be too short by factor of 4. By
accepting Foster's proposal, we suggest that the
disturbances set in at rc will lead to manifest

10' .----------------

10'10'

Experiment
o Nielsen and SabersI<y(1973)

Predictions
~. --Eq. (27)

ff:J? 0······· Eq. (28)

~ ·-··-·KimandKim(I986)

~~
9

0'8""<1. 0
o"~,

~ "Q~'o-

.,"'''-:." ....,

o

10'

10.3 L-..........................................~.................-'-.............-"'-...........

1~ 1~

Fig. 5 Comparison of critical conditions with
experimental data

Pr

Fig.4 Effect ofPrandti number on critical condition
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convection at 4lC. Thus, it is assumed that the

onset time when the convective motion can be
detectable experimentally, 1O can be given as

follows:

The above relation is compared with Nielsen

and Sabersky's experimental works in Fig. 5.

Chu (1990) conducted experiments to investi­

gate the relationship between Rae and Raq,c,

where Rae is the critical Rayleigh number based

on temperature difference between two plates. He

represents his experimental data as Rae vs. Raq,c
plot. For convenience of comparison, we recon­

struct our stability condition by using the follow­

ing relation obtained from base temperature pro­

file

as

1O= 17.92Raq-1/2

Rae=2.39Ra~~

(28)

(29)

(30)

cal meaning of the present lC, and NUmtn criteria

are related with critical condition of Kim and

Kim's. From the Chu's visualization results, we

can obtain very important information on the

growth of disturbances. When the horizontal fluid

layer is heated from below, a certain time is

required to make the buoyancy-driven convection

set in. Once the disturbances set in, they grow

continuously and affect the Nusselt number. The

Nusselt number follows conduction state to a
certain time after onset of disturbances, and

deviates from conduction state. And further time
is required to show minimum point and

undershoot in the Nusselt number.

Chu's NUmtn criteria have good agreements with

Nilsen and Sabersky's results. From this, it can be
assumed that Nielsen and Sabersky's criteria cor­

respond to Chu's NUmin criteria. From these, it

seems evident that the disturbances which set in at

the lC grow and they will affect the Nusselt num­

ber around 4lC.

In Fig. 6, Chu's experimental results are

compared with the theoretical results of ours and

Kim and Kim's (1986).
As shown in Fig. 6, our critical condition

represents the incipient motion criteria fairly well,

whereas Kim and Kim's results show good agree­

ment with NUmtn criteria. It is assumed that

incipient motion criteria have nearly same physi-

10' .------------------,

Predictions
--Eq.(30)

......... Kim and Kim (1986) ...•

10'

o

Experimental Criteria (Chu, 1'190)

o Incipient motion

• NU...
1t

Fig. 6 Comparison with critical conditions with
experimental data

3. Heat Transfer

3.1 Turbulent heat transport for large
Rayleigh number

The possibility of connecting stability criteria

to the heat transport on the turbulent thermal

convection was investigated by Howard (1964).

He postulated that at a large Rayleigh number the
convective instability, in the form of thermal, sets

in after a time t", and the thermal break-up the

boundary layer after a time much shorter than t".

It was further assumed that after the break-up of
boundary layer the system be restored to quies­

cent state. According to the Howard's concept, we

assume that the onset of thermal can be described

by the above stability analysis, and that the tur­

bulent heat transfer would be governed by the
narrow boundary layer like a conduction film of

thickness 0* near the heated surface. 0. is usually
called the conduction layer thickness.

Busse (1967) modified the Howard's concept

such that the heat transport resistances exist near

the upper boundary as well as the lower one. This

boundary layer instability model is schematized

in Fig. 7. According to this model the Nusselt
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(38)

10'

0.6313

10'10'

r

10'

(11

wdAdzr

11
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Assembling the Eqs. (32), (36) and (37), for
the whole range of Ra., we can derive a new heat
transfer correlation of the present system of large
Prandtl number fluid as

Raq

Fig.8 Comparison with Nu vs. Ra, for large
Prandtl number

~~ can be obtained as:

Raa,.~=747.3 (35)

By combining Eqs. (34) and (35) the resulting
heat transfer correlation for the fully-developed
turbulent state is expressed as:

Nu=0.0956Ra¥4 for Raq -+ 00 (36)

3.2 Heat transfer correlation
In order to obtain a heat transfer correlation

over whole range of Rayleigh number, we con­
sider the heat transfer near the criticla condition.
The finite-amplitude heat transfer characteristics
slightly over Raq.c(= 1296) can be obtained by
using the shape assumption of Stuart (1964). For
the region of Ra, -+ Raq.c, the Nusselt number
can be expressed as:

~u = 1- ~ (Raq - Raq,c) for Ra, -+ Raq,c (37)

The constant r is obtained from the distribution
of disturbance quantities at Raq=Raq.c:

(34)

(33)

(32)ARa~rNu

1 ( Ra)1/3Nu=- -- for Ra -+ 00
2 2Ra"

where Ra,=g,BL1T~/ (all) is the Rayleigh
number based on the conduction thickness 0* and
the temperature difference over the conduction
layer thickness L1T8. Following the boundary
-Iayer instability model of Fig. 7, L1T8 is the half
of the total temperature difference L1T. By using
the relation of Raq=Ra'Nu, Eq. (33) can be
replaced by

number in the fully-developed turbulent state is
expressed as:

Nu Qactual 1 d for Ra -+ 00 (31)
QoondUet!on 2 0*

Long (1976), Cheung (1980), and Arpaci
(1997) analysed the buoyancy-driven turbulent
heat transport semi-theoretically and showed that
the heat transport characteristics for Ra -> 00

would be independent of the fluid-layer depth,
like the Howard's and Busse's concept. By slight
modification of their model, the following heat
transfer correlation for the present system can be
obtained:

1-BRaq11C!

where A and B are the undetermined constants.
By transforming Eq. (31) the heat transport in

the fully-developed turbulent state may be
expressed as:

NU=J...( Raq )1/4 for Raq -+ 00
2 Ra"

Following the Howard's concept 0* may be
replaced by o.r.c. o.r.c is thermal penetration depth
at the onset condition of buoyancy-driven
convection. From the Eq. (34) and the relations
.of Ra* =Raqi!, cn.c=3.21 rl /2

, and Eq. (29), Ra
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_ 0.0956(Ra~4-12961/4)
Nu-I + 1-1.404Raq 1/4 (39)

The above prediction agrees fairly well with the

experimental results of Nielsen and Sabersky
(1973), as shown in Fig. 8. It is noted that Nu=

I for Raq= 1296. This value corresponds to that

of conduction state.

4. Conclusion

The critical condition of the onset of buoyancy

-driven motion of uniformly heated horizontal

fluid layer has been analyzed by the propagation

theory. The predicted critical condition is verified
by the comparison with experimental data. It

seems evident that the disturbances which set in at

zc must grow to be detectable experimentally.

Incorporating the present stability criteria and the

boundary-layer instability model, a new heat

transfer correlation is derived. Since our theo­
retical predictions have close agreement with

experimental results, it may be stated that our

propagation theory is a powerful tool to examine

the buoyancy-driven phenomena in horizontal

fluid layers.
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